The multiplier rule for ordinary differential equations
نویسندگان
چکیده
منابع مشابه
On solving ordinary differential equations of the first order by updating the Lagrange multiplier in variational iteration method
In this paper, we have proposed a new iterative method for finding the solution of ordinary differential equations of the first order. In this method we have extended the idea of variational iteration method by changing the general Lagrange multiplier which is defined in the context of the variational iteration method.This causes the convergent rate of the method increased compared with the var...
متن کاملThe Hodie Method for Ordinary Differential Equations
This paper describes a method of generating high order difference approxith matians to an m — order differential operator L using (m + 1) pointsIt uses certain auxiliary points for each (m + 1)-tuple in order to achieve an arbitrary specified order of truncation error in the difference approximation. In the context of solving Lu = f, this method may be interpreted as using L^u = I^f where is an...
متن کاملSummary: Ordinary Differential Equations
1 Initial Value Problem We are given a right hand side function f(t, y) with f : [t0, T ]×Rn → Rn and an initial value y0 ∈ Rn. We want to find a function y(t) with y : [t0, T ] → Rn such that y′(t) exists, is continuous and satisfies the initial value problem y′(t) = f (t, y(t)) , y(t0) = y0. (1) We assume that f(t, y) satisfies a Lipschitz condition with respect to y (at least for y with |y −...
متن کاملLinearizable ordinary differential equations . ∗
Our purpose in this paper is to study when a planar differential system polynomial in one variable linearizes in the sense that it has an inverse integrating factor which can be constructed by means of the solutions of linear differential equations. We give several families of differential systems which illustrate how the integrability of the system passes through the solutions of a linear diff...
متن کاملOrdinary Differential Equations
Abstract We extend the Eruguin result exposed in the paper ”Construction of the whole set of ordinary differential equations with a given integral curve” published in 1952 and construct a differential system in R which admits a given set of the partial integrals, in particular we study the case when theses functions are polynomials. We construct a non-Darboux integrable planar polynomial system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1952
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1952-0052707-6